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Abstract

A 2D parallel Euler code based on the space-time
conservation element and solution element (CE/SE)
method is validated by solving the benchmark prob-
lem 1 in Category 3 of the Third CAA Workshop
[1]. This problem concerns the acoustic field gen-
erated by the interaction of a convected harmonic
vortical gust with a single airfoil. Three gust fre-
quencies, two gust configurations, and three airfoil
geometries are considered. Numerical results at both
near and far fields are presented and compared with
the analytical solutions, a frequency-domain solver
GUST3D solutions, and a time-domain high-order
Discontinuous Spectral Element Method (DSEM)
solutions. It is shown that the CE/SE solutions
agree well with the GUST3D solution for the low-
est frequency, while there are discrepancies between
CE/SE and GUST3D solutions for higher frequen-
cies. However, the CE/SE solution is in good agree-
ment with the DSEM solution for these higher fre-
quencies. It demonstrates that the CE/SE method
can produce accurate results of CAA problems in-
volving complex geometries by using unstructured
meshes.

1. Introduction

The noise generated by the interaction of vortical
disturbances originating upstream with propellers
or turbomachinery blades has been of great inter-
est in noise studies. A model problem regarding
a two-dimensional vortical wave interaction with a
single airfoil was posed as a benchmark problem in
Category 3 of the Third CAA Workshop [1]. This
problem involves complex geometries and flow phe-
nomena including vorticity shedding and acoustics
radiation. It has been solved by using frequency-
domain solvers [2] and high-order accurate time-
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domain methods that solves the full nonlinear Euler
equations [3,4,5].

In this paper, this problem is solved numerically
by solving the unsteady 2D Euler equations using
the space-time conservation element and solution el-
ement (CE/SE) method [6,7]. The CE/SE method
was originally developed by Chang in 1991 [8]. It ap-
plies flux conservation to finite space-time volumes,
and achieves second-order accuracy in both space
and time for uniform space-time meshes. Its salient
properties are summarized briefly as follows. First,
both local and global flux conservations are enforced
in space and time instead of in space only. Second,
all the dependent variables and their spatial deriva-
tives are considered as individual unknowns to be
solved for simultaneously at each grid point. Third,
every CE/SE scheme is based upon a non-dissipative
scheme with addition of fully controllable numerical
dissipation. This results in very low numerical dis-
sipation. Fourth, the flux-based specification of the
CE/SE schemes gives rise in a natural fashion to a
simple yet generally effective non-reflecting bound-
ary condition, which is an important issue in CAA.
Some practical advantages of the CE/SE method
over the high order finite difference methods are
summarized as follows: 1) it can use both structured
and unstructured meshes in one single algorithm to
handle complex geometries, 2) it can avoid singu-
lar points without using any special treatment, and
3) it has the most compact stencil, this leads to ef-
ficient parallel computing and easy implementation
of boundary conditions.

A detailed description of this method, and accom-
panying analysis, can be found in [6-11]. Applica-
tions of this method to CAA problems reveal that,
on mesh sizes used in practice, the result is com-
parable to those obtained using high order compact
difference schemes, even though the current solver is
only 2nd-order accurate [12-18].

In this paper, a version of the 2D CE/SE Euler
code that is adapted for parallel computing, is used
to compute the acoustic field generated by the inter-
action of a vortical gust with a single airfoil. Three
gust frequencies, two gust configurations, and three



airfoil geometries are considered. Numerical results
at both near and far fields are presented and com-
pared with the analytical or GUST3D or DSEM so-
lutions.

In the following, the description of the benchmark
problem is given first, which is followed by the so-
lution procedure, initial and boundary conditions,
numerical results and conclusions.

2. Problem Description

Consider a Joukowski airfoil or a flat plate with
chord length ¢. The mean flow parameters at infinity
are z-velocity Uy, y-velocity Vo, = 0, mass density
Poo, Static pressure po,, and Mach number M., =
0.5. Flow variables are non-dimensionalized by us-
ing U, ¢/2, ¢/(2Us), poo and pooUZ2 as the ve-
locity, length, time, density and pressure scales, re-
spectively [1]. As a result, the non-dimensionalized
mean flow parameters at infinity are:

Poo =1, Do =1/(vM3) (1)

Here a perfect gas with the specific heat ratioy = 1.4
is assumed. In this paper, we will consider the

Too =1, Too =0,

steady-state Euler mean flow solution with its non-
dimensionalized z-velocity @, y-velocity v, mass den-
sity p and static pressure P satisfying the following
boundary conditions at infinity:

U=TUw, U=7Tc, P=Pss P = Do (at infinity)
(2)
Also, we will consider the unsteady Euler flow so-
lution with its non-dimensionalized z-velocity u, y-
velocity v, mass density p and static pressure p sat-
isfying the following boundary conditions at infinity:

U=TUgo +u, V=7 +7,

P="Poot+ P P=Do+p (atinfinity) (3)

where

u' € (vg ky/|K|) cos(kp + kyy —wt)  (4)
o' (v, by /[K]) cos(kam + kyy —wt)  (5)

and
P 0 and p %o (6)

In Eqgs. (4) and (5), (i) vy, k; and k, are given con-
stants; (ii) |k| is the absolute value of k = (ky, k),

ie.,
k| k2 + k2 (7a)

W = Upoky (7b)

and (iii)
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Note that Egs. (4), (5), (7a) and (7b) imply that

ou o' ou o o' ov
%+8—y—0, E'F%—O, and E+%—O
(8)

As a result, (u',v',p',p') (which represents the
undistorted gust) is a plane-wave solution to the lin-
earized Euler equations in which (Teo, Ueo, Puys Peo)
is the constant unperturbed solution. However, be-
cause the steady-state solution (u,v,p,p) may vary
in space, generally (u',v', p',p') is not a solution to

the unperturbed solution. In the following numerical

simulations, both 1D and 2D gusts are considered.
For the case of 1D gust, it is assumed that

vy =002, k,;=0.1,1.0,3.0, and k,=0 (9)

On the other hand, for the case of 2D gust, it is
assumed that

v, =002, and k, =k, =01,1.0,30 (10)

3. Solution Procedure

The unsteady solution (u,v,p,p) referred to in
Sec. 2 satisfies the following 2D Euler equations:

=0, m=1234 (11)

ot oz Oy
Here
u =p, uz=pu, uz=pv, ug=DFE (12)

fi=pu, f2=pu +p, f3 = puv, fo = (B +p)u

(13)
91 = pv, g2 = puv, g3 = pv® +p, gs = (B +pv
(14)
with E; = p/(y — 1) + p(u® 4+ v?) /2. To proceed, let
« def — ' + def _ '
v =Eu-—a-u, v*Ev-7-1,
. def  _ « def
P Ep-p—p, PP=Ep-5-p (15
and
aaru, 0 o0, s, 5 P4yt
(16)

Because (u,7,p,p) and (u',v',p',p'), respectively,
represent the steady-state solution and the undis-
torted gust, Eq. (15) implies that (u*,v*, p*, p*) rep-
resents the contribution to the unsteady solution due
to the presence of acoustic waves and “gust distor-
tion”. Moreover, because Egs. (15) and (16) imply
that

u=d+u,v=>0+v, p=p+p, p=p+p (17)



with the aid of Eq. (3), it can be shown that, at
infinity,

U =TUoo, U = Too, P = Pogs D = Do (at infinity)

(18)
Next, for each m = 1,2,3,4, let (i) @m, frm and gm
be the values of uy,, fin and g, respectively, when
u, v, p and p assume the values of @, ¥, p and p,
respectively, and (i) @, f,, and g,, be the values
of up, fm and g, respectively, when u, v, p and
p assume the values of @, U, p and P, respectively.
Then because (@, U, p, p) represents the steady-state
solution, one has

iz — 9 m agm _
5t =0, and + By =0 (19)
Moreover, let
def Iaﬁl Iaﬂl
-t RN e 2
§1 = wos +v 3y (20)
def ,0Us ,0us  _ Du'
T R N N Y 21
S2 U oz +v By +u ot (21)
def ,3"173 ,6ﬂ3 _ Dv'
R 22
3TY% 3y "o (22)
def ,0Uy4 ,0us  _ Du'  _ D
Su v m T v (2
4 3 +v 3y + s 5 + s 5 (23)
with Dy B’ y o’
u' gef Ou' _Ou' _Ou
2 T+ T 24
TR TEREL P (24)
and Dv' ger OV ov' ov'
2 4 U— +T—— (25)

ot ot Oz Oy
Then Egs. (8), (12)—(17) and (19), and the fact that
(u', v, p',p") and (u*,v*, p*,p*) are small perturba-
tions of (@,7,p,p) (Note: v, < 1) imply that the
relation

Oupm  Ofm +Bgm _ Ol
ot ox Oy

Ofm . Ogm
5 o + By +sm (26)

where m = 1,2, 3,4, is accurate to the first order in

vg. Combining Egs. (11) and (26), one has
Oim  Ofm . Oim
5t oz T oy

=—$m, m=12234 (27)

The current numerical simulation includes the fol-
lowing steps: (i) evaluation of the steady-state solu-
tion @,, (or equivalently (@, v, p,P)); (ii) evaluation
of s, using Egs. (4), (5) and (20)—(23); (iii) evalua-
tion of @, (or equivalently (4, 9, p, p)) using Eq. (27);
and (iv) evaluation of (u*,v*, p*,p*) using Eq. (16).
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Note that, (i) because the convective distortion of
the gust generates no acoustic waves, p* represents
the acoustic pressure generated by the interaction of
the gust with the airfoil, and (ii) the solved problem
is linear, therefore its solution can be superimposed.

4. Initial and Boundary Conditions

Here we specify the numerical initial and boundary
conditions applied when solving Eq. (27) for @,,. At
t = 0, the marching variables are specified using the
steady-state solution. Moreover, at any point on the
airfoil surface, it is assumed that the velocity (u,v)
is tangent to the airfoil. By using Eq. (17), this
implies that

Nl + nyd = —(ngu’ + nyv') (28)

where (nz,ny) is any unit vector normal to the airfoil
at the point under consideration.

On the other hand, at any spatial mesh point on
the outer boundary of the computational domain,
the values of u},, uy,. and u;,, at the nth time level,
respectively, are specified using the (n —1/2)th time
level value of the corresponding variables at the in-
terior spatial point immediately neighboring to it.
It has been shown numerically that these boundary
condition are non-reflecting in nature [7].

5. Numerical Results

In the following, numerical results will be pre-
sented for two gust configurations, three gust fre-
quencies, and three airfoil geometries. A 2D parallel
CE/SE Euler solver, with no slope-limiting (a = 0)
and with added-numerical-dissipation (e = 0.5)[9],
is used in the computation. The numerical solution
of the acoustic pressure non-dimensionalized by v,
is plotted in all figures. The RMS pressure on the
airfoil surface, and the sound intensity at one and
four chord lengths from the origin, are presented for
all cases to examine both the near and far field so-
lutions.

5.1 Flat-Plate Airfoil

For this case, the analytical and numerical solu-
tions are independent of k,. The obtained solu-
tions are plotted in Figs. 1-3 for k, = 0.1,1.0, and
3.0, respectively. It can be seen that a fairly good
agreement with the analytical solution is achieved
for both low and high frequencies. For k, = 1.0, the
CE/SE solution is slightly different from the analyt-
ical solution.

As an example, for the case k, = 3.0, a compu-
tational domain of —23 < z,y < 23 with 921x921
uniformly distributed mesh points is used. The to-
tal number of triangular cells is 846400 and At =




T/120, with T' = 27 /w being the time period of the
gust. The solutions settle into a time-periodic pat-
tern by ¢t = 15T(3600 marching steps). Note that,
for the CE/SE method, a time period of At/2 is
advanced by each marching step. The computation
takes 0.5 hours walltime using 32 CPUs on SGI Ori-
gin 2000 system with 250 MHz MIPS R10000 pro-
Cessors.

5.2 Symmetric Airfoil

The symmetric Joukowski airfoil of 12% thickness
is considered here. As shown in Fig. 4, the airfoil
is surrounded by an unstructured mesh (Fig. 4(a))
which, in turn, is embedded in a structured mesh
(Fig. 4(b)). The unstructured mesh is generated
by using TRUMPET [19]. The mean pressure on
the airfoil surface is plotted in Fig. 5 and compared
with the potential code FLO36 solutions. The cor-
responding acoustic solutions are shown in Figs. 6—
8 for the 2D gust case at different frequencies. A
reasonable agreement between CE/SE and GUST3D
solutions is observed for k, = k, = 0.1, while there
are large discrepancies for k, = k, = 1.0 and 3.0.
However, the CE/SE solutions agree well with the
DSEM solution for k; = k, = 1.0 and 3.0. In Figs.
9-11, the computed solutions for the 1D gust case
are shown for different frequencies. For k, = 0.1
and 1.0, the CE/SE solutions agree well with the
GUST3D solution in the near field and have slight
differences in the far field.

Note that, for the symmetric airfoil case, the
DSEM results given in [5] do not provide (i) any
2D gust solutions with k, = k, = 0.1; (ii) the sound
intensity at one chord length due to the 2D gust
with either k; = ky, = 1.0 or k; = k, = 3.0; and (iii)
any 1D gust solutions. Also note that no GUST3D
solutions are available for the 1D gust case with
k; = 3.0 and k, = 0, and the 2D gust case with
ke = ky = 3.0.

As an example, a computational domain of —23 <
z,y < 23 is used for k; = k, = 3.0. An unstruc-
tured mesh with 7392 triangles is used in the region
of -2 < z,y < 2 while a uniform structured mesh
formed from 420000 triangles is used in the rest of
the computational domain. The RMS pressure solu-
tion converges by ¢ = 107" (14000 marching steps).
The computation takes 1.5 hours walltime using 16
CPUs on SGI Origin 2000 system with 400 MHz
MIPS R12000 processors.

5.3 Cambered Airfoil

The airfoil considered here has the same thickness
as the symmetric airfoil but with a camber ratio of
0.02 and an angle of attack of 2°. The steady lift is
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no longer zero and the flow field is more complex. A
larger computational domain is necessary. As an ex-
ample, a computational domain of —40 < z,y < 40
is used for the case k, = k, = 1.0. Among the
643744 triangular cells that fill the entire computa-
tional domain, 5344 cells are contained in the region
of —2 < z,y < 2 (see Fig. 12). The numerical
results are obtained assuming At = T'/1050.

The computed mean pressure on the airfoil surface
is plotted in Fig. 13 with the FLO36 solution, show-
ing that the CE/SE solution on the upper surface
is slightly under-predictive. For the two frequen-
cies k; = 0.1 and 1.0, the unsteady solutions are
plotted in Figs. 14-15 for the 2D gust case and in
Figs. 16-17 for the 1D gust case, respectively. The
CE/SE solutions are very close to the GUST3D so-
lution for both 1D gust case and 2D gust case at
kz = 0.1. However larger discrepancies are observed
for k; = 1.0. The CE/SE solution is very similar to
the DSEM solution for the 2D gust case at k, = 1.0.

The domain size study is performed for the cam-
bered airfoil for the 2D gust case at k, = 1.0.
The near field solutions, including the RMS pres-
sure on the airfoil surface and the sound intensity
at one chord length, obtained in a smaller domain
of —23 < z,y < 23, are identical to the solution
presented above. The sound intensity at four chord
lengths is slightly different from the presented so-
lution. The non-reflecting boundary condition has
some reflections that are generated at the far-field
boundary, which is also observed in the RMS pres-
sure contour plot. However the reflection is generally
less than 5% of the maximum value of the acoustic
field and has little effect on the accuracy of the nu-
merical solutions.

Grid refinement study is not performed because
the mesh used in the computation is fine enough to
capture both the acoustic waves and the gust. About
30-40 mesh points per wave length are necessary for
the CE/SE method since it is 2nd order accurate. In
the current computation, about 40 mesh points per
wave length are used.

6. Conclusions

The 2D parallel CE/SE Euler code has been used
to solve the Problem 1 in Category 3 of the Third
CAA Workshop. Three gust frequencies, two gust
configurations, and three airfoil geometries have
been studied. A fairly good agreement between
the CE/SE and GUST3D solutions in both near
and far fields is achieved for the lowest frequency.
There are some discrepancies between CE/SE and
GUST3D solutions for higher frequencies. How-
ever, the CE/SE solution is in good agreement with
the DSEM solution for these higher frequencies. It



is concluded that the CE/SE method can produce
accurate solution with a simple and general non-
reflecting boundary condition. No special treat-
ment is needed for the singular geometric boundary
points, such as the leading edge point of the flat-
plate airfoil and the trailing edge point of the sym-
metric and cambered airfoils. The CE/SE method
can handle the complex geometry well by using the
unstructured mesh. This work demonstrates that
the CE/SE method is capable of producing accu-
rate solutions of CAA problems involving complex
geometries.
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(c) Sound intensity at four chord lengths.

Figure 6: CE/SE solutions for the symmetric airfoil
case assuming k; = ky = 0.1.
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Figure 14: CE/SE solutions for the cambered airfoil
case assuming k, =k, = 0.1.
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